40 CH 100G AWG Module（40 CH 100G DWDM Mux／Demux）

OSM offers a full range of AWG products，including $50 \mathrm{GHz}, 100 \mathrm{GHz}$ and 200 GHz AWG．Here we present the generic specification for the 40 －channel 100GHz AWG MUX／DEMUX component supplied for use in DWDM system．
This component is designed for use within the C－band release of DWDM system．To decrease the power dissipation of the devices in different environmental conditions，the AWG package is special designed with selection of reliable thermal plastic with low thermal conduction，and the AWG operating temperature is controlled by using foil resist heater or Peltier TEC with thermistor temperature sensor．Different input and output fibers，such as SM fibers，MM fibers and PM fiber can be selected to meet different applications．We can also offer different package for different products，including ABS box and 19＂ 1 U rack mount．

Optical Specification：（Flattop AWG）

Parameters	Condition	Specs			Units
		Min．	Typ．	Max．	
Number of Channels		40			
Number Channel Spacing	100 GHz	100			GHz
Ch．Center Wavelength	ITU frequency．	C－band			nm
Clear Channel Passband		± 0.1			nm
Wavelength Stability	Maximum range of the wavelength error of all channels and temperatures in average polarization．	± 0.05			nm
－1 dB Channel Bandwidth	Clear channel bandwidth defined by passband shape． For each channel	0.4			nm
－3 dB Channel Bandwidth	Clear channel bandwidth defined by passband shape． For each channel	0.6			nm
Optical Insertion Loss at ITU Grid	Defined as the minimum transmission at ITU wavelength for all channels．For each channel，at all temperatures and polarizations．		4.5	6.0	dB
Adjacent Channel Isolation	Insertion loss difference from the mean transmission at the ITU grid wavelength to the highest power，all polarizations，within the ITU band of the adjacent channels．	25			dB
Non－Adjacent，Channel Isolation	Insertion loss difference from the mean transmission at	30			dB

[^0]| | the ITU grid wavelength to the highest power，all
 polarizations，within the ITU band of the nonadjacent
 channels． | | | |
| :--- | :--- | :--- | :--- | :--- |
| Total Channel Isolation | Total cumulative insertion loss difference from the
 mean transmission at the ITU grid wavelength to the
 highest power，all polarizations，within the ITU band of
 all other channels，including adjacent channels． | 22 | | |
| Insertion Loss Uniformity | Maximum range of the insertion loss variation within
 ITU across all channels，polarizations and
 temperatures． | | 1.0 | 1.5 |
| Directivity（Mux Only） | Ratio of reflected power out of any channel（other than
 channel n）to power in from the input channel n | 40 | | |
| Insertion Loss Ripple | Any maxima and any minima of optical loss across ITU
 band，excluding boundary points，for each channel at
 each port | dB | | |
| Optical Return Loss | Input \＆output ports | | dB | |
| PDL／Polarization Dependent Loss
 in Clear Channel Band | Worst－case value measured in ITU band | 0.5 | dB | |
| Polarization Mode Dispersion | | 40 | | dB |
| Maximum Optical Power | | 0.3 | 0.5 | dB |
| MUX／DEMUX Input／
 Monitoring Range | Output | | | |

IL Represents the worst case over a＋／－0．1nm window around the ITU wavelength
PDL was measured on average polarization over a $+/-0.1 \mathrm{~nm}$ window around the ITU wavelength．

Nomenclature：

AWG	X	XX	X	XXX	X	X	X	XX
	Band	Number of Channels	Spacing	1st Channel	Filter Shape	Package	Fiber Length	In／Out Connector
	$\begin{gathered} \mathrm{C}=\mathrm{C}-\text { Band } \\ \mathrm{L}=\mathrm{L}-\text { Band } \\ \mathrm{D}=\mathrm{C}+\mathrm{L}-\text { Band } \\ \mathrm{X}=\text { Customize } \end{gathered}$	$\begin{gathered} 16=16-\mathrm{CH} \\ 32=32-\mathrm{CH} \\ 40=40-\mathrm{CH} \\ 48=48-\mathrm{CH} \\ \mathrm{XX}=\text { Special } \end{gathered}$	$\begin{gathered} 1=100 \mathrm{G} \\ 2=200 \mathrm{G} \\ 5=50 \mathrm{G} \\ \mathrm{X}=\text { Special } \end{gathered}$	$\begin{gathered} \mathrm{C} 60=\mathrm{C} 60 \\ \mathrm{H} 59=\mathrm{H} 59 \\ \mathrm{C} 59=\mathrm{C} 59 \\ \mathrm{H} 58=\mathrm{H} 58 \\ \text { XXX=special } \end{gathered}$	G＝Gaussian B＝Broad Gaussiar F＝Flat Top	$\begin{gathered} \text { M=Module } \\ \text { R=Rack } \\ \mathrm{X}=\text { Special } \end{gathered}$	$\begin{gathered} 1=0.5 \mathrm{~m} \\ 2=1 \mathrm{~m} \\ 3=1.5 \mathrm{~m} \\ 4=2 \mathrm{~m} \\ 5=2.5 \mathrm{~m} \\ 6=3 \mathrm{~m} \\ \text { S=Specify } \end{gathered}$	$\begin{gathered} 0=\text { None } \\ 1=\text { FC/APC } \\ 2=\text { FC/PC } \\ 3=\text { SC/APC } \\ 4=\text { SC/PC } \\ 5=\text { LC/APC } \\ 6=\text { LC/PC } \\ 7=\text { ST/UPC } \\ \text { S=Specify } \end{gathered}$

[^1]
[^0]: ADD：No．189，BINHE ROAD，HUAYANG，TIANFU NEW AREA，CHENGDU，SICHUAN，CHINA 610213
 TEL：＋86－28－64570369
 FAX：＋86－28－64570369
 E－mail：sales＠osemos．com http：／／www．osemos．com

[^1]: ADD：No．189，BINHE ROAD，HUAYANG，TIANFU NEW AREA，CHENGDU，SICHUAN，CHINA 610213
 TEL：＋86－28－64570369
 FAX：＋86－28－64570369
 E－mail：sales＠osemos．com http：／／www．osemos．com

